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Damage spreading in the Potts and Ashkin-Teller models: 
exact results 
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Service de Physique TheoriqueS de Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 14 June 1989 

Abstract. Following the approach introduced by Coniglio et a/, for the k ing  model, we 
study in this paper the relation between damage spreading and thermal properties in the 
q-state Potts model as well as in the Ashkin-Teller model. We show that by selecting 
appropriate combinations of different types of damage ( q ( q - 1 )  in the Potts model and 
12 in the Ashkin-Teller model), it is possible to find exact relations between damage and 
thermodynamic functions, like the magnetisation and the pair correlation function. 

1. Introduction 

The dynamical evolution of the Hamming distance between two microscopic configur- 
ations of a discrete statistical model is known as damage spreading. 

In recent years, several efforts have been made, mainly for Ising models, to obtain 
a better understanding of this problem; In two [ l ,  21 and three [3,4] dimensions as 
well as in the presence of a magnetic field [ 5 ] ,  the Ising model has been exhaustively 
investigated by using different dynamics like heat-bath [3], Glauber [2,4,5] and Q ~ R  [2]. 

Recently, Coniglio e? a1 [ I ]  have shown that for the Ising model [ 6 ]  there are 
relations connecting the damage to thermal properties, and they used them to obtain 
good numerical estimates for the correlation function and the critical exponents 
associated with the clusters of correlated spins on a square lattice. 

In this paper, we apply the approach introduced by Coniglio et al to the more 
general q-state Potts [7] and Ashkin-Teller [ 8 ]  models, and we obtain exact relations 
between specific combinations of damages and macroscopic thermal quantities, like 
the pair correlation function and the magnetisation. 

We investigate damage spreading by using two configurations ( A  and B )  which 
evolve in time following the same dynamic rule (heat-bath, Glauber, etc), and we call 
a site damaged, at a given time, when the corresponding variables on this site are in 
different states in the two configurations, at that time. 

In section 2 we discuss the Potts model, in section 3 the Ashkin-Teller model, and 
in section 4 we conclude. 

2. The Potts model 

The Potts model is defined by associating to each site of a lattice, a discrete variable 
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a, which can assume q values ( a  = 1 ,2 ,3 ,  . . . , 9). The Hamiltonian is given by: 

where K ,  = J,J/k,T is the coupling constant between first-neighbouring sites and  
S(a,, a,) is Kronecker's delta function. 

If we consider two configurations of the model ( A  and B )  there are at most q ( q  - 1) 
different types of damage that can occur on a site. We will, however, distinguish only 
two types of damage, namely 

( l , i ) i = { u , ( A ) = l ;  a , ( B ) #  l }  and (7, l ) ,  {a , (A)  # 1; a , ( B )  = 1) (2)  

(the choice of state 1 is arbitrary). 
If we start at the initial time ( t  = 0) with two configurations in thermal equilibrium, 

then the probabilities that the damages appear at the site i are given by: 

(3) d;l = [6(L+,(A),  1)(1- 8 ( a , ( B ) ,  1111 

where [ . . . ] denotes the time average over the trajectory in space phase. 
We define the function r, by: 

- -  
P d : ' - d , ?  ( 5 )  

r, = [ S ( ( + , ( A ) ,  1)1 - [8(ai(B),  111. ( 6 )  

From (3)-(5) we have 

Using ergodicity and  having all sites in both configurations free except the central site 
of configuration B, where we impose uo( B )  # 1 for all values of t 2 0, we have 

[ 6 ( a , ( A ) ,  1)1 = ( 8 ( a , ,  1)) (7)  

[ 6 ( a , ( B ) ,  111 = ( ( I  -6 (ao ,  1))6(aa, 1))/(1--8(Uo, 1)) (8) 

and  

(( . . . ) is the thermal average). 
From (6)-(8), we obtain the r, function, with the above constraint at the origin, 

where CO, is the pair correlation function given by 

CO, = (6(a, ,  1)8(uo, 1))-(6(a, ,  1))(6(%, 1) )  (10) 

m =(8 (uo ,  1)) (11) 

and  

( m  is the order parameter, plus l / q ,  of the Potts model). 

that the r, function (denoted as rhl) can be written as 
I f  we now fix simultaneously ao(A) = 1 and  uo(B)  # 1 for t 2 0, it is easy to see 

C O  I 

1 - m2'  
rb, =- 
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Figure 1. Typical large clusters of damaged sites ( 1 ,  I) of the Potts model at Tc,  in a 40 x 40 
square lattice. We have used the conditions: a, (A)  = 1 and a , ( E )  f 1 for t 3 0. ( a )  q = 2; 
( b )  q = 3 ;  (c) q = 4 ;  ( d )  4=5. 
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We see that ( 9 ) - (  12) permit us to obtain the pair correlation function (Col) as well as 
information about the order parameter as functions of the combination of damages 
( 1 , i )  and (7, 1). 

For the particular case q = 2 (Ising model) the expressions (9)-( 12) recover, as 
expected, ( 6 )  and ( 7 )  of [l] ,  if we set U, = *l and S ( U , ,  U,) = (1 +u,u , ) /~ ;  it should be 
noticed that for q > 2, both damages (1, 7) and ( i , 1 )  are always present for all dynamics 
(heat-bath, Glauber, etc) and initial conditions and, because of this, the To, and rAl 
functions cannot be identified with the total damage, as done in [ 11 for the Ising model 
( q = 2 ) .  Thus, it is necessary to calculate both damages to obtain the To, and rb, 
functions. 

We have investigated the qualitative behaviour of clusters constituted by sites with 
a ( 1 , i )  (or (1, 1)) damage. For a square lattice at the critical temperature, we have 
noted that: ( i )  the sizes of these clusters strongly vary with time; (ii) for q > 4 (first-order 
phase transition) the clusters are very small and less connected than for the q S 4 case 
(second-order transition). In figure 1 we present some of the bigger clusters of (1, 7) 
damages sites, in a 40x40 lattice, for several values of q ( q  = 2 , .  . . , 5 ) ,  which appear 
over a period of 3600 time steps per site. 

3. The Ashkin-Teller model 

This model is constructed by associating to each site of a lattice two Ising variables 
U, $ = *l ,  with interactions of two and four spins, described by the Hamiltonian: 

([ K ,  = Jc'/ kB T ;  L ,  = J',"/ k, TI and [ h: = H : /  k ,  T ;  h ?  = Hy/ kB T] are coupling con- 
stants and magnetic fields respectively). 

For the present study, it is useful to define the binary variables: l l y =  
( ( 1 + ~ ~ ) / 2 ) ; I I ? = ( ( 1 + $ , ) / 2 )  and l l : ' = ( ( l + ~ , $ , ) / 2 ) ,  which take the role of the 
6(a , ,  1) in the Potts case. i f  we consider two configurations ( A  and B) of the model, 
we can see that, at each site, twelve different damages are possible. Their definitions 
and associated probabilities are given in table 1. 

Table 1. Damages of the Ashkin-Teller model, with respective probabilities; [ . . . ] denotes 
time average over the space phase. 

v ( A ) ;  $ ( A )  u ( B ) ;  $ ( E )  Probabilities 

1 (+, + )  
2 (+ ,  + )  
3 ( + ,  + )  
4 ( + ,  - j  
5 (+ ,  - 1  
6 (+ ,  - )  
7 ( - ,  + )  
8 ( - ,  + )  
9 ( - ,  + )  

10 ( - ,  - )  
1 1  ( - ,  - )  
12 ( - ,  - 1  
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We will make a study similar to that of the Potts model; we start with two 
configurations in thermal equilibrium (with h p  = h f  = 0) and on the central site we 
impose some restriction for all times ( t  3 0). 

First, we select four types of combinations of damages: 

(l,O)j’)={rI:(A)= l;ll:(B)=O) (0, l ) ~ ” ~ { l l p ( A ) = O ; l l ~ ( B ) =  1) (14) 
and 

( 1,O) I ”  = {ll:’( A) = 1; TI;”( B) = 0) (15) 
Denoting the respective probabilities by D!’30’( 1); Dto3”( l ) ,  D:’*O’(2) and Djo3”<2), we 
have 

(0, l)t2)={ll:’(A) = O ;  I’Iy’(B) = 1). 

I I I (16) 

(17) 

I (18) 

Dj09”(2) = dj4’+d16)+dj7J+d:9) (19) 

D:l.o)(l) = dj2)+d(3)+d(5I+d(b) 

Dio..”(1) = dj71+ dj8)+ djlo)+ dj”) 

D1l.o)(2) = dj1) + d/3) + djlo) + d(l2) 

where dv’(j = 1, 12) are defined in table 1. 
Now, we define two functions rjl’ and rjZ) by 

(20) rjll = ~!1.0)(1)  - ~ ( 0 . 1  1 
I (1) 

and 
rf2)= D ; I . O ) ( ~ )  - D ; O J ’ ( ~ ) .  

Using (16)-(21) and the values of table 1, we obtain 

rj”= [ll:(A)]-[rIy(B)] 

and 

r:2)= [lly’(A)]-[ll~’(B)] (23) 
(we can analogously define a similar quantity for the ll? variable). 

the r, and thermal functions. 
Finally, we impose appropriate boundary conditions to obtain relations between 

3.1. One-spin function 

If one imposes the boundary conditions: o0(B) = - l ( t z O )  one has: 

then 

where Chi’ = ( 0 ; ~ ~ )  - (u , ) (u~)  is the pair correlation function and m = (U,,) is the one-spin 
magnetisation. 

By imposing the boundary condition: ao(A) = 1 and ao(B) = -1 ( t z  0) we can 
easily prove that: 
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3.2. Two-spin functions 

To obtain the two-spin thermal functions, we can choose the following boundary 
condition: ao( B )  = -+,( B )  ( t  3 0). This implies that 

[ n " ( A ) ]  = ( l l y 4 )  (27) 

and 

Using (27) and (28) in (23) one has 

where CL? = (ai$i~o+o) - (a,+,)(aolLo) and M = (ad0) .  

( t  3 0), we can see that: 
Finally, if one imposes the boundary conditions a , (A)  = $ , (A)  and u o ( B )  = --Go( B )  

Consequently, the pair correlation functions (CA:', Cbf') and magnetisations (m,  M )  
can be calculated, by (25), (26) and (29), (30), as functions of r:') and r;". 

We have also examined the clusters of sites with a (1,O)"' damage, as well as the 
clusters of sites with a (1, 0)'2'  damage, in a 40 x 40 square lattice, on Baxter's critical 
line [ 9 ]  (on which the critical exponents change continuously). The susceptibilities 
(,y(l' and x")), associated with the pair correlation functions (,ycJ' = Z ,  Ck'; j = 1,2), 
are expected to obey the scaling laws [ l ]  x(J 'aLy(J ' ' " i J ' ,  where L is the size of the 
system and y ( J )  and v( j) are, respectively, the critical exponents associated with the 
susceptibility and the correlation length for the one ( j  = 1) and two spins ( j  = 2). On 
Baxter's line these exponents are known [9] (for one spin y'"/v"'= 7/4 and for two 
spins 3/2 s y"'/ v(" d 7/4); however, we have noted that all clusters of (1,O)"' and 
(1, 0)'2' damaged sites (observed for 20000 time steps per site) are very small (240)  
so that it is difficult to draw satisfactory conclusions from the numerical data. 

3.3. Another approach to obtain the magnetisations 

To calculate the magnetisations m and M,  it is more useful to consider the configurations 
A and B in the presence of magnetic fields ( h y  and A y ) ,  without fixing any spin. 

We start by setting on all sites of the lattice: 

U, ( A )  = -U, ( B ) ;  + , ( A )  = $, ( B ) ;  hy( A )  = - h y (  B )  = h f ( A )  = h f (  B )  = h. 
Now considering the Ashkin-Teller model in the presence of a magnetic field h: = hy  = 
h, and using the invariance of the averages under a, + -at; +, ++!I,; h y +  -hp; h f +  hy ,  
one has 

[ n : ( A ) I =  m y )  (31) 

[n:(B)I = (1 - n 3  (32) 

[n:"A)1 = or4) (33)  

[lly'(B)]=(l -TI:'). (34) 
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Then using (22) and (23) we obtain 

r : l l=(a,)= m 

and 

Tj” = (a,+,) = M. 

4. Conclusions 

985 

(35) 

In this paper, we have generalised the results, already known for the k ing  model, 
relating the damage spreading to thermal properties to the case of the Potts and the 
Ashkin-Teller models. 

The generality of the models studied here, makes the analysis of damages more 
difficult than in the Ising case. In general, there are more damages ( q ( q  - 1) in Potts 
and  12 in the Ashkin-Teller case), and we have not been able to choose a boundary 
condition and  a particular dynamics to eliminate a large fraction of them, as was done 
in the Ising case. 

However, the exact relations developed here, allow us to obtain numerically accurate 
values of thermal properties (like the pair correlation function, the susceptibility and  
the magentisation) from the knowledge of selected combinations of damages, using 
any dynamics (heat-bath, Glauber, etc). In particular, these calculations can be very 
useful to obtain a better understanding of these models on three-dimensional lattices, 
where no exact solution is known at present. 

Another interesting result obtained here, was the qualitative aspect of the clusters 
of damaged sites in the Potts case, at the critical temperature on a square lattice; we 
noted that when q (number of states) is greater than 4, the clusters become very small 
and less connected (as compared with the ones for q s 4). This result is related to the 
change of the order of the phase transition at q = 4 (second-order ( q  < 4) to first-order 
( q > 4 ) ) .  In  fact, the correlation function, that is related to the damages, is, as we 
know, long-ranged in a continuous transition, becoming short-ranged when the model 
exhibits a first-order phase transition. 

It should be interesting to investigate these clusters in three dimensions, to obtain, 
in particular, information about the type of phase transitions exhibited by the anti- 
ferromagnetic Potts as well as the Ashkin-Teller models. 
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